Proses Metakognitif dalam Pengajuan Masalah Geometri Berdasarkan Gaya Kognitif Field Dependent dan Field Independent

  • Yuli Suhandono Universitas Negeri Surabaya
Keywords: Metacognitive process, Problem posing, Cognitive style

Abstract

This study aimed to describe about metacognitive process of student in geometry problem posing based cognitive style Field Dependent (FD) and Field Independent (FI). The subjects were four students of grade X. The result showed that metacognitive process of subjects FD and FI first category in posing geometry problem, doing activity of planning, monitoring and evaluating process and the result thinking about every step of problem posing. Metacognitive process of subject FD of second category in posing geometry problem, doing activity of planning, monitoring, and evaluating process and the result thinking about step understanding information, arranging the planning of problem posing and formulating problem. Furthermore, metacognitive process of subject FI second category in posing geometry problem, doing of planning activity, monitoring and evaluating process and the result thinking about step understanding information, arranging the planning of problem posing and controlling back of suitability problem made with first information

References

Abdussakir. (2009). Pembelajaran matematika dengan problem posing. Diakses pada 25 Februari 2016, dari https://abdussakir.wordpress.com/2009/02/13/ pembelajaran-matematika-dengan-problem-posing/

Arends, R. I. (1997). Classroom instruction and management. New York: McGraw-Hill.

Budiarto, M. T. (2000). Pembelajaran geometri dan berpikir geometri. Prosiding Seminar Nasional Matematika, 2 November 2000. Surabaya: Jurusan Matematika FMIPA ITS Surabaya.

Brown, A. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. Metacognition, motivation, and understanding, 65-116.

Cai, J., Lane, S., & Jakabcsin, M. S. (1996). “The role of open-ended tasks and holistic scoring rubrics: Assessing students’ mathematical reasoning and communication”, dalam Communication in Mathematics, K-12 and Beyond. Virginia: NCTM.

Dawson, T. L. (2008). Metacognition and learning in adulthood. Prepared in response to tasking from ODNI/CHCO/IC Leadership Development Office, Developmental Testing Service, LLC.

Desoete, A. (2007). Evaluating and improving the mathematics teaching-learning process through metacognition. Electronic Journal of Research in Educational Psychology, 5(3), 705-730.

Flavell, J. H. (1979). Metacognitive and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906-911.

Frenkel, S. (2014). Metacognitive components in learning to learn approaches. International Journal of Psychology: A Biopsychosocial Approach, 14, 95-112.

Gagne, R. M., Briggs, L. J., & Wager, W. W. (1992). Principles of instructional design. New York: Harcourt Brace Javanovich College Publishers.

Karnain, T., Bakar, M. N., Siamakani, S. Y. M., Mohammadikia, H., & Candra, M. (2014). Exploring the metacognitive skills of secondary school students’ use during problem posing. Sains Humanika, 67(1), 27-32. DOI: 10.11113/sh.v67n1.121

Kuzle, A. (2011). Pattern of metacognitive behaviour during mathematics problem-solving in a dynamic geometry environment. Diakses pada 10 Desember 2015, dari www.jwilson.coe.uga.edu

North Central Regional Educational Laboratory. (1995). Metacognition in strategic teaching and reading project guidebook. Diakses pada 11 Desember 2016, dari http://www.ncrel.org/sdrs/areas/ issues/students/learning/ Ir1metp.htm.

National Council of Teachers of Mathematics. (2007). Principles and standards for school mathematics. Reston, VA: Author.

Resnick, L. B. (1987). Education and learning to think. Washington, D. C: National Academy Press.

Siswono, T. Y. E. (2002). Proses berpikir siswa dalam pengajuan soal. Jurnal Nasional Matematika, Jurnal Matematika atau Pembelajarannya, Tahun VIII ISSN: 0852-7792, 44-50.

Sudia. (2013). Profil metakognisi siswa yang bergaya kognitif impulsif-reflektif dalam memecahkan masalah terbuka materi geometri ditinjau dari perbedaan jenis kelamin. (Disertasi). UNESA, Surabaya.

Sugiyono. (2011). Metode penelitian kuantitatif, kualitatif, dan R&D. Bandung: Alfabeta

Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1975). Field‐dependent and field‐independent cognitive styles and their educational implications. ETS Research Report Series, 1975(2), 1-64.

Yeap, B. H. (1997). Mathematical problem solving: A focus on metacognition. (Unpublished Dissertation). Nanyang Technological University, Singapore.
Published
2017-06-16
Section
Articles